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Compressive sensing (CS) of sparse GHz-band RF signals 
using microwave photonics may achieve better 
performance with smaller size, weight and power 
requirements than electronic CS systems or conventional 
Nyquist rate sampling systems.  The critical element in a 
microwave photonic CS system is the device that 
produces the CS measurement matrix (MM).  Here we 
show that passive speckle patterns in multimode fibers 
or planar waveguides potentially provide excellent MMs 
for CS.  We measure and calculate the MM for a 
multimode fiber and perform simulations using this MM 
in a CS system.  We show that the speckle MM exhibits the 
sharp phase transition and coherence properties needed 
for CS and that these properties are similar to those of a 
subgaussian MM with the same mean and standard 
deviation.  We calculate the MM for a multimode planar 
waveguide and find dimensions of the planar guide that 
give a speckle MM with performance similar to that of the 
multimode fiber.  CS simulations show that all measured 
and calculated speckle MMs exhibit robust performance 
with equal amplitude signals that are sparse in time 
(identity transform), in frequency (discrete cosine 
transform), and in wavelets (Haar wavelet transform). 
The planar waveguide results indicate a path to a 
microwave photonic integrated circuit for measuring 
sparse GHz-band RF signals using CS.     ©2015 Optical 

Society of America 

OCIS codes: (320.7085) Ultrafast information processing; Data 

processing by optical means; (060.2360) Fiber optics links and 
subsystems; (250.4745) Optical processing devices 

http://dx.doi.org/10.1364/OL.99.099999 

High resolution, Nyquist rate sampling of GHz-band RF signals rapidly 
generates huge amounts of data.  Compressive sensing (CS) has been 
developed to address this general issue for sparse signals and images 
[1-3].  In CS systems, a sparse input signal x (dimension N) is recovered 
from a measurement vector y (dimension M) with M<<N.  The vector y 
is obtained from x after multiplication by a measurement matrix  as 
in Eq. (1), 
 
  y =   x = -1 s   (1) 
 

where s = x is a sparse vector with a small number K of non-zero 
elements and  is the transform that shows the sparsity of x.  If the 
measurement matrix (MM)  satisfies certain properties [1-3], sparse 
x can be recovered by a range of algorithms provided that M is 
somewhat greater than K [1,3].  The MM  and the matrix 
multiplication are performed in the analog domain, and an important 
issue for CS systems is finding a practical way to do this. Since CS 
recovery calculations require accurate knowledge of , it is also 
mandatory that be reproducible and amenable to calibration. 
     Both electronic [4,5] and microwave photonic CS systems [6-16] 
have been demonstrated that recover sparse RF signals.  In the GHz 
band, electronic CS systems suffer from the same sources of error as 
Nyquist rate ADCs, namely timing jitter and amplitude noise.  Photonic 
CS systems have the equivalent of timing jitter and amplitude noise, 
but in many cases the distortions are static or lower in frequency and 
thus more amenable to calibration.  Previous photonic systems have 
used pseudo-random bit sequences (PRBS) for the MM and modulated 
them on optical carriers with light valves [6-8] or optical modulators 
[9-15].  Here we demonstrate that propagation of an optically chirped 
signal through a multimode optical fiber or planar waveguide 
performs the function of a CS MM.   
     The CS system proposed here in Fig. 1 uses a multimode waveguide 
to replace the 2D spatial light modulator in earlier work [7, Fig. 1] and 
performs the function of the pseudo-random bit sequence in the 
modulated wideband converter [5, Fig. 3].  Pulses from a femtosecond 
mode-locked laser (MLL) pass though dispersion compensating fiber 
(DCF) or other dispersive device with dispersion chosen to stretch the 
pulse to the interpulse time, pass through a Mach-Zehnder modulator 
(MZM) that impresses the RF signal on the optical intensity, enter a 
multimode waveguide, and finally are split spatially at the output of the 
guide and directed to an array of M photodiodes.  Integration time 
constants of the photodiodes are matched to the MLL pulse period, and 
the electrical signals from the photodiode array are digitized by an 
array of ADCs clocked to the MLL pulse repetition frequency (PRF).  
Optical pulse compression, by placing after the MZM a dispersive 
element of opposite sign to the DCF, can be used to facilitate signal 
integration [13].  The components on the left and the right of the 
multimode waveguide are similar to earlier work [6-8], and again we 
exploit time-wavelength mapping as depicted by the rainbow-colored 
pulse icons.  At the output of the multimode waveguide are formed 
speckle patterns that vary with wavelength (and hence time via the 
time-wavelength mapping of the MLL plus DCF combination), and 
small changes in wavelength can give 
  

mailto:George.valley@aero.org


completely different patterns after relatively modest propagation 
distances [17].  For example, Fig. 2 shows speckle patterns at the end of 
a 1-m long, 105-m core diameter, 0.22 NA step-index fiber observed 
at 1539.44 and 1539.52 nm.   An optional fiber mode scrambler 
(Newport Corporation model FM-1) was used near the input end of 
the fiber to fully excite the fiber modes.  Without the mode scrambler, 
as much as 10 m of multimode fiber would have been required to 
realize speckle patterns of similar spatial-frequency content.  As seen in 
Fig. 3, wavelength scans at 4 different locations within the output 
image of the fiber appear random and uncorrelated.   Each of these 
wavelength scans would correspond to a row of the MM , with the 
sampling in time set by the time-wavelength mapping property.  (In 
generating Fig. 3, speckle pattern images were recorded while 
sweeping the wavelength of a single-frequency tunable laser.  The 
combination of the camera frame rate and laser sweep rate provided a 
wavelength resolution of 0.02 nm.)  
      

 
Fig. 1.  Compressive sensing system for measuring sparse RF signals 
using a multimode waveguide to implement the measurement matrix.  
 
 

 
 
Fig. 2. Speckle patterns at end of 1-m long, 105-m diameter, 0.22 NA  
multimode for  = 1539.44 nm (left) and 1539.52nm (right).  
  
     Using the grid of red dots included in Fig. 2, as locations of the output 
photodiode array, we derive a MM for the multimode fiber from the 
speckle pattern images as a function of wavelength.  For 0.4x0.4 m 
apertures, this yields 112 measurements of optical intensity as a 
function of wavelength, of which 4 are shown in Fig. 3, and a MM with 
dimensions 112x2048.   
     We performed several tests to assess whether the measured speckle 
MM can be used for CS.  First, we tried to recover several different 
types of sparse signals: sparse in time (identity transform, , 
sparse in frequency (discrete cosine transform), and sparse after the 
Harr wavelet transform.  Fig. 4 shows the probabilities that the RF 
signals are recovered as a function of the small dimension M of the MM.  
A signal is classified as recovered if all K of its unknown frequencies, 
pulse locations, or Haar coefficients are recovered and the amplitudes 
are recovered to better than 1 part in 10,000.  For each basis, the 
sparse vector s consists of K equal-amplitude numbers randomly 
placed on a 2048-point grid, and each curve is for 100 realizations of 
the sparse vector s.  We used a standard LASSO code [18] to obtain the 
recovered vector xrec, and we varied the small dimension M of the MM 
by stripping rows off of the 112x2048 MM.  The results are consistent 
with the well known formula for the minimum dimension of the 
measurement matrix, Mmin ~ K log(N/K) [2,3], and the measured 
speckle MM works well for signals sparse in all three bases.  Note that 

the pulses with the identity matrix for   recovered somewhat 
better than the sinusoids ( quals the discrete cosine transform) or 
Haars (  equals the Haar transform matrix).  This is caused by the fact 
that the speckle MM is more correlated with the Haar and cosine basis 
vectors than with the identity basis.   
 

 
Fig. 3. Measured intensity as a function of wavelength at 4 locations 
within the output plane of a 1-m, 105-m, 0.22NA step-index fiber. 

 
Fig. 4. Probability of signal recovery as a function of small dimension of 
the measurement matrix for 100 trials for K = 2, 4, 8 and 16 and signals 
sparse in the identity, discrete cosine and Haar wavelet transforms. 
 
     A second test involves the coherence between the rows of the MM , 
which ideally should be uncorrelated with each other so that each 
component of y is an independent measurement of the input x [19].  
This can be quantified with the normalized mutual coherence Cij 
 
  Cij = (i). (j)/[| (i)|| (j)|],  (2) 
 
for all i, j  (i ≠ j).  Fig. 5 (left) overlays the 12,432 coherences calculated 
from the 112x2048 measured multimode-fiber speckle MM, and for 
comparison, Fig. 5 (right) shows the coherences for a MM composed of 
Gaussian random numbers with the same mean and standard 
deviation as elements of the speckle MM. The mutual coherence for the 
measured speckle MM is a bit broader than the random matrix, but the 
measured MM has very good coherence. (Note many CS MMs use 
positive and negative numbers as opposed to the positive numbers 
used here.  A MM with positive and negative numbers can be achieved 
in our speckle system by subtracting photodiode signals from one 
another as suggested in another context by [11].  Should more 
photodiode signals be needed to reach M rows, the output of the MZM 
in Fig. 1 can be split and input into an additional multimode waveguide 
and photodiode array.)   
 
 



 
Fig. 5. Mutual coherence between rows for speckle MM (left) and 
Gaussian random-number MM (right).   
 
     A third well-known test for a CS MM is the restricted isometry 
property (RIP) [1-3].  Unfortunately, proving RIP appears to be 
computationally intractable.  A surrogate to proving RIP suggested by 
[20] is performing numerical experiments to determine if the MM 
produces a recovery “phase transition”.  The “phase transition” is seen 
as a sharp boundary between regions of high probability of recovery 
and regions of low probability of recovery in a 3D plot of probability as 
a function of M and K.  Fig. 6 shows the phase transitions for the 
multimode-fiber speckle MM and the random MM for signals sparse in 
time, and the difference is minimal.  CS MMs must be equally effective 
against all possible bases in which an input signal may be sparse, and 
this occurs when the rows of the MM are uncorrelated with the bases 
of interest.  It is not possible to test all possible bases, but we have also 
performed CS recovery calculations with signals sparse in cosines and 
Haars with the results shown in Fig. 7. It can be seen that the measured 
fiber MM yields very similar sharp phase transitions when used with 
all three bases. 

 
Fig. 6.  Probability of recovery as a function of sparsity K and number of 
measurements M for the speckle MM (left) and the Gaussian random-
number MM (right). 

 
Fig. 7.  Probability of recovery as a function of sparsity K and the 
number of measurements M for the measured speckle MM with a 
signal composed of K sinusoids (left) and a signal that is K sparse under 
the Haar wavelet transform (right). 
 
     Analytical solutions for a multimode cylindrical waveguide are well 
known, and for a weakly guiding fiber as used in our measurements, 
they reduce to the LP modes [21, 22] in which the TE and TM modes 
are degenerate.  For the parameters of our fiber (core diameter = 105 
m, length = 1 m, NA = 0.22) and for equal power in each mode to 
approximate the mode-scrambler, we calculate the output intensity at 

the locations shown by the red dots in Fig. 2.  Fig. 8 shows 4 rows of the 
calculated MM; visually, there is no significant difference from the 
measured MM rows shown in Fig. 3.  
 

 
Fig. 8.   Calculated intensity as a function of wavelength at 4 locations 
within the output plane of a 1-m, 105-m, 0.22NA step-index fiber. 
 
      Analytical solutions for a planar multimode waveguide are also well 
known [22, 23].  We have used these solutions to calculate speckle 
patterns for planar waveguides and to design a suitable guide for the 
CS MM.  We consider a silicon-on-insulator (SOI) guide which leads to a 
strongly guiding case in which both TE and TM modes must be 
considered.  We assume that the power per mode is equal at the 
entrance to the guide and recognize that achieving this in practice will 
require use of a mode-scrambling technique.  First, to determine the 
width of the guide, we examine speckle patterns such as shown in Fig. 
9 for a 10cm guide.   From Fig. 9, one can see that the 5m wide guide 
has only 10 to 15 speckle lobes, and this would limit M to less than 
around 30 if it were used as a CS MM.  A guide between 20 and 30 m 
wide appears to have enough independent spatial locations to support 
M ~ 100.  Fig. 10 shows overlapping speckle patterns at the output of a 
25.4-m wide planar waveguide for 50 wavelengths separated by 
0.01nm and for guides 1mm, 1cm, 10cm and 1m long.  The 1mm and 
1cm guides are clearly not long enough as all 50 wavelength speckle 
patterns are highly correlated with each other.  On the other hand, a 
planar waveguide 1m long may be impractical.  A guide length of 5 to 
10 cm appears to be the minimum that will have sufficient mixing for 
CS. 

 
Fig. 9. Speckle patterns at the output of a 10-cm long SOI waveguide for 
guides 5, 10, 20 and 30 m wide.  The magenta and cyan curves are for 
wavelengths of  = 1.537 and 1.53701 m respectively.   
 
     Based on the calculations displayed in Figs. 9 and 10, we chose a 
waveguide 25.4 mm wide and 5 cm long for comparison with the fiber 
results. Fig. 11 shows the phase transition plot calculated for the 
multimode fiber and planar waveguide MM.   The planar results are 



slightly inferior to the fiber, but it seems likely that optimizing the 
width and length of the planar guide will yield similar performance.  

 
Fig. 10. Speckle patterns across an SOI waveguide for 50 wavelengths 
separated by 0.01 nm and for guide lengths of 1mm to 1m.  

 Fig. 11.  Probability of recovery as a function of sparsity K and the 
small dimension of the MM M for the calculated fiber MM (left) and the 
calculated planar waveguide MM (right).  
 
    Practical use of speckle in a multimode waveguide for CS requires 
that the speckle MM, the MLL pulse and any other dispersion in the 
system be stable and amenable to calibration.  Previous work [7, 8, 13, 
14] has found that commercial mode-locked lasers were sufficiently 
stable for CS.  The stability of speckle from a multimode waveguide 
depends on control of temperature and mechanical stresses (e.g., 
bending of the fiber).  In our laboratory measurements with the 
multimode fiber, basic precautions were taken to ensure stable speckle 
patterns, namely securing the fiber from perturbations; these steps are 
similar to those routinely taken to obtain stable polarizations within 
non-polarization-maintaining singlemode fiber.  Fig. 12 shows the 
match between two wavelength calibrations taken more than 1 hour 
apart (using a tunable single-frequency laser) for a single row of a MM 
obtained with a single photodiode placed in the image plane of the 
multimode fiber output.  Other work using speckle in a similar 1m, 
105m, 0.22NA multimode fiber for spectroscopic applications 
discusses stability of the speckle pattern in detail [17, Sections 8 and 9].  
For example, [17] states that “for a 1 m long fiber, the temperature 
would need to change by ~8°C to decorrelate the speckle pattern.”  
   A potential factor limiting the RF bandwidth of a speckle-based CS 
system is that the frequency content of the RF signal itself may modify 
the speckle pattern.  At an optical wavelength of 1550nm, should the 
speckle pattern vary on a 0.05 nm wavelength scale, the MM will be 
frequency dependent for RF signals with frequency content above 6.24 
GHz.  However, the speckle MM can still be used for CS if the system is 
calibrated by measuring the response for all basis vectors in which the 
RF signal is sparse.  Referring to Eq. 1, the calibration consists of 
measuring yi for each basis vector i.   This MxN matrix, in which N is 
now the number of possible basis vectors in the RF signal, can be used  
as the dictionary to recover the signal using an orthogonal matching 
pursuit recovery algorithm [8].   The variation of the speckle MM with 
 

 
Fig. 12.  Two independent calibrations of the multimode fiber 
separated in time by more than 1 hour. 
 
RF frequency suggests that it may be possible to measure RF signals 
modulated on a stable single-frequency laser directly from the change 
in speckle pattern, a subject for future investigation.   
     To conclude, we show that optical speckle in multimode fibers and 
planar waveguides satisfies 3 tests for a compressive sensing 
measurement matrix:  1) CS simulations show expected recovery as a 
function of the number of measurements, 2) rows of the speckle MMs 
show coherence properties similar to a MM formed from Gaussian 
random numbers, and 3) recovery plotted in the 
sparsity/measurement plane (K-M) shows sharp phase transitions for 
all measured and calculated speckle MMs and for 3 classes of sparse 
signals.  The next step is to couple an array of photodiodes and ADCs to 
the output of the multimode guide and demonstrate a full CS system.  
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